

Faster Evaluation of S-Boxes via Common Shares

J-S. Coron, A. Greuet, E. Prouff, R. Zeitoun

F.Rondepierre

CHES 2016

AES

By definition: $S_{AES}(x) = A \cdot x^{254} + b \in \mathbb{F}_{2^8}[x]$

AES

By definition:
$$S_{AES}(x) = A \cdot x^{254} + b \in \mathbb{F}_{2^8}[x]$$

Other Blockciphers

DES S-Box Table

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0 4	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Polynomial interpolation

$$S_{DES}(x) = \underbrace{a_{63}x^{63} + a_{62}x^{62} + \dots + a_{1}x + a_{0}}_{\text{compute with } +, \times, \cdot^{2}} \in \mathbb{F}_{2^{6}}[x]$$

t-Probing Adversary

A t-probing adversary is allowed to know the exact value of at most t intermediate results.

t-Probing Adversary

A t-probing adversary is allowed to know the exact value of at most t intermediate results.

- Adversary can access key values.
- Security is built to twhart limited adversaries.

Secret Sharing/Masking

In order to thwart a t-probing adversary, each sensitive variable x is split in n = t + 1 variables (x_0, \dots, x_t) , such that:

$$x = x_0 \oplus x_1 \oplus \cdots \oplus x_t$$

- Variables x_1, \ldots, x_t are by convention random **masks**.
- $x_0 = \mathbf{x} \oplus \bigoplus_{i \geq 1} x_i$
- $X = (x_0, ..., x_t)$ is a **shared** representation of x.

Let A, B be two shared variables and say we want to compute $C = (c_0, c_1)$ such that C is a sharing of $a \cdot b$:

$$(\mathbf{a} \oplus \mathbf{a}_1) \cdot (\mathbf{b} \oplus \mathbf{b}_1) = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a} \cdot \mathbf{b}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b} \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$
$$= \mathbf{a} \cdot \mathbf{b} \oplus (\mathbf{a} \oplus \mathbf{a}_1) \cdot \mathbf{b}_1 \oplus (\mathbf{b} \oplus \mathbf{b}_1) \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$
$$\mathbf{a}_0 \cdot \mathbf{b}_0 = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a}_0 \cdot \mathbf{b}_1 \oplus \mathbf{b}_0 \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$

Let A, B be two shared variables and say we want to compute $C = (c_0, c_1)$ such that C is a sharing of $a \cdot b$:

$$(\mathbf{a} \oplus \mathbf{a}_1) \cdot (\mathbf{b} \oplus \mathbf{b}_1) = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a} \cdot \mathbf{b}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b} \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$
$$= \mathbf{a} \cdot \mathbf{b} \oplus (\mathbf{a} \oplus \mathbf{a}_1) \cdot \mathbf{b}_1 \oplus (\mathbf{b} \oplus \mathbf{b}_1) \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$
$$\mathbf{a}_0 \cdot \mathbf{b}_0 = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a}_0 \cdot \mathbf{b}_1 \oplus \mathbf{b}_0 \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$

• We would say $C(c_0, c_1)$:

$$c_0 = a_0 \cdot b_0$$

 $c_1 = [(a_0 \cdot b_1) \oplus a_1 \cdot b_0] \oplus (a_1 \cdot b_1)$

Let A, B be two shared variables and say we want to compute $C = (c_0, c_1)$ such that C is a sharing of $a \cdot b$:

$$(\mathbf{a} \oplus \mathbf{a}_1) \cdot (\mathbf{b} \oplus \mathbf{b}_1) = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a} \cdot \mathbf{b}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b} \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$
$$= \mathbf{a} \cdot \mathbf{b} \oplus (\mathbf{a} \oplus \mathbf{a}_1) \cdot \mathbf{b}_1 \oplus (\mathbf{b} \oplus \mathbf{b}_1) \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$
$$\mathbf{a}_0 \cdot \mathbf{b}_0 = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a}_0 \cdot \mathbf{b}_1 \oplus \mathbf{b}_0 \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$

• Security needs an additional random r:

$$c_0 = a_0 \cdot b_0 \oplus r$$

$$c_1 = (a_1 \cdot b_1) \oplus [(a_0 \cdot b_1 \oplus r) \oplus a_1 \cdot b_0]$$

Let A, B be two shared variables and say we want to compute $C = (c_0, c_1)$ such that C is a sharing of $a \cdot b$:

$$(\mathbf{a} \oplus \mathbf{a}_1) \cdot (\mathbf{b} \oplus \mathbf{b}_1) = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a} \cdot \mathbf{b}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b} \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$

= $\mathbf{a} \cdot \mathbf{b} \oplus (\mathbf{a} \oplus \mathbf{a}_1) \cdot \mathbf{b}_1 \oplus (\mathbf{b} \oplus \mathbf{b}_1) \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$
$$\mathbf{a}_0 \cdot \mathbf{b}_0 = \mathbf{a} \cdot \mathbf{b} \oplus \mathbf{a}_0 \cdot \mathbf{b}_1 \oplus \mathbf{b}_0 \cdot \mathbf{a}_1 \oplus \mathbf{a}_1 \cdot \mathbf{b}_1$$

• Security needs an additional random r:

$$c_0 = a_0 \cdot b_0 \oplus r$$

$$c_1 = (a_1 \cdot b_1) \oplus [(a_0 \cdot b_1 \oplus r) \oplus a_1 \cdot b_0]$$

• Not secure if by construction we have $a_1 = b_1$

Say we want to compute E, F from A, B, C, D, such that:

$$E = A \cdot B$$

$$F = C \cdot D$$

Say we want to compute E, F from A, B, C, D, such that:

$$E = A \cdot B$$

$$F = C \cdot D$$

In a 1st order context, the paper deals with:

$$e_0 = a_0 \cdot b_0 \oplus r$$

$$e_1 = (a_1 \cdot b_1) \oplus [(a_0 \cdot b_1 \oplus r) \oplus a_1 \cdot b_0]$$

$$f_0 = c_0 \cdot d_0 \oplus r$$

$$f_1 = (c_1 \cdot d_1) \oplus [(c_0 \cdot d_1 \oplus r) \oplus c_1 \cdot d_0]$$

Say we want to compute E, F from A, B, C, D, such that:

$$E = A \cdot B$$

$$F = C \cdot D$$

In a 1st order context, the paper deals with:

$$e_0 = a_0 \cdot b_0 \oplus r$$

$$e_1 = (a_1 \cdot b_1) \oplus [(a_0 \cdot b_1 \oplus r) \oplus a_1 \cdot b_0]$$

$$f_0 = c_0 \cdot d_0 \oplus r$$

$$f_1 = (c_1 \cdot d_1) \oplus [(c_0 \cdot d_1 \oplus r) \oplus c_1 \cdot d_0]$$

Say we want to compute E, F from A, B, C, D, such that:

$$E = A \cdot B$$

$$F = C \cdot D$$

In a 1st order context, we can have:

$$a_1 = c_1$$

$$b_1 = d_1$$

Say we want to compute E, F from A, B, C, D, such that:

$$E = A \cdot B$$

$$F = C \cdot D$$

The paper also extends the result to *t*-probing context:

$$a_i = c_i, \quad \frac{t+1}{2} \leqslant i \leqslant t$$

$$b_i = d_i, \quad \frac{t+1}{2} \leqslant i \leqslant t$$

Optimality of sharing

Let A, B be two shared variables, such that :

$$a_i = b_i, k \leqslant i \leqslant t$$

• If k=1, then $a_0 \oplus b_0 = a \oplus b$

Optimality of sharing

Let A, B be two shared variables, such that :

$$a_i = b_i, k \leqslant i \leqslant t$$

- If k = 1, then $a_0 \oplus b_0 = a \oplus b$
- If $k < \frac{t+1}{2}$, then $\bigoplus_{i < k} a_i \oplus b_i = \mathbf{a} \oplus \mathbf{b}$

Optimality of sharing

Let A, B be two shared variables, such that :

$$a_i = b_i, k \leqslant i \leqslant t$$

- If k=1, then $a_0 \oplus b_0 = a \oplus b$
- If $k < \frac{t+1}{2}$, then $\bigoplus_{i < k} a_i \oplus b_i = \mathbf{a} \oplus \mathbf{b}$
- If $k \geqslant \frac{t+1}{2}$, then $\bigoplus_{i < k} a_i \oplus b_i$ requires more than t probing

CommonShares

```
Input: A = (a_0, \ldots, a_t) shares of a and a, shares of b Output: A' = (a'_0, \ldots, a'_t) shares of a and a, shares of a for a in a in
```


end for

```
SecMult
Input: A = (a_0, \dots, a_t) shares of a and B, shares of b
Output: C, shares of a \cdot b
   for i = 0 to t do
        c_i \leftarrow a_i \cdot b_i
   end for
   for i = 0 to t do
        for i = i + 1 to t do
             r \leftarrow \mathbb{F}_{2^k}
             c_i \leftarrow c_i \oplus r
             c_i \leftarrow c_i \oplus [(a_i \cdot b_i \oplus r) \oplus a_i \cdot b_i]
        end for
```


TwoMult

Input: A, B, C, D shares of a, b, c, d, where A, C (resp. B, D) have common shares

Output:
$$E, F$$
 shares of $a \cdot b, c \cdot d$
for $i = 0$ to t do
 $e_i \leftarrow a_i \cdot b_i$
 $f_i \leftarrow \begin{cases} c_i \cdot d_i & 0 \leqslant i \leqslant \left\lfloor \frac{t-1}{2} \right\rfloor \\ e_i = c_i \cdot d_i & \left\lceil \frac{t+1}{2} \right\rceil \leqslant i \leqslant t \end{cases}$

end for

CHES 2016 10

TwoMult

```
Input: A, B, C, D shares of a, b, c, d, where A, C (resp. B, D) have
    common shares
Output: E, F shares of a \cdot b, c \cdot d
    for i = 0 to t do
            e_i \leftarrow a_i \cdot b_i
          f_i \leftarrow \begin{cases} c_i \cdot d_i & 0 \leqslant i \leqslant \left\lfloor \frac{t-1}{2} \right\rfloor \\ e_i = \frac{c_i}{c_i} \cdot d_i & \left\lceil \frac{t+1}{2} \right\rceil \leqslant i \leqslant t \end{cases}
    end for
    for i = 0 to t do
            for i = i + 1 to t do
                   r \leftarrow \mathbb{F}_{2^k}
                                                                                                                                         s \leftarrow \mathbb{F}_{2^k}
                   e_i \leftarrow e_i \oplus r
                   e_i \leftarrow e_i \oplus [(a_i \cdot b_i \oplus r) \oplus a_i \cdot b_i] f_i \leftarrow f_i \oplus [(c_i \cdot d_i \oplus s) \oplus c_i \cdot d_i]
            end for
    end for
```


CommonMult.

```
Input: A, B, D shares of a, b, d, where B, D have common shares
Output: E, F shares of a \cdot b, a \cdot d
    for i = 0 to t do
            e_i \leftarrow a_i \cdot b_i
           f_i \leftarrow \begin{cases} a_i \cdot d_i & 0 \leqslant i \leqslant \left\lfloor \frac{t-1}{2} \right\rfloor \\ e_i & \left\lceil \frac{t+1}{2} \right\rceil \leqslant i \leqslant t \end{cases}
    end for
    for i = 0 to t do
            for i = i + 1 to t do
                   r \leftarrow \mathbb{F}_{2^k}
                                                                                                                                          s \leftarrow \mathbb{F}_{2^k}
                                                                                                                                     f_i \leftarrow f_i \oplus s
                   e_i \leftarrow e_i \oplus r
                   e_j \leftarrow e_j \oplus [(a_i \cdot b_j \oplus r) \oplus a_j \cdot b_i] f_j \leftarrow f_j \oplus [(a_i \cdot d_j \oplus s) \oplus a_j \cdot d_i]
            end for
    end for
```


CommonMult.

```
Input: A, B, D shares of a, b, d, where B, D have common shares
Output: E, F shares of a \cdot b, a \cdot d
    for i = 0 to t do
            e_i \leftarrow a_i \cdot b_i
           f_i \leftarrow \begin{cases} a_i \cdot d_i & 0 \leqslant i \leqslant \left\lfloor \frac{t-1}{2} \right\rfloor \\ e_i & \left\lceil \frac{t+1}{2} \right\rceil \leqslant i \leqslant t \end{cases}
    end for
    for i = 0 to t do
            for i = i + 1 to t do
                   r \leftarrow \mathbb{F}_{2^k}
                                                                                                                                          s \leftarrow \mathbb{F}_{2^k}
                                                                                                                                     f_i \leftarrow f_i \oplus s
                   e_i \leftarrow e_i \oplus r
                   e_j \leftarrow e_j \oplus [(a_i \cdot b_j \oplus r) \oplus a_j \cdot b_i] f_j \leftarrow f_j \oplus [(a_i \cdot d_j \oplus s) \oplus a_j \cdot d_i]
            end for
    end for
```


CommonMult.

```
Input: A, B, D shares of a, b, d, where B, D have common shares
Output: E, F shares of a \cdot b, a \cdot d
    for i = 0 to t do
            e_i \leftarrow a_i \cdot b_i
           f_i \leftarrow \begin{cases} a_i \cdot d_i & 0 \leqslant i \leqslant \left\lfloor \frac{t-1}{2} \right\rfloor \\ e_i & \left\lceil \frac{t+1}{2} \right\rceil \leqslant i \leqslant t \end{cases}
    end for
    for i = 0 to t do
            for i = i + 1 to t do
                   r \leftarrow \mathbb{F}_{2^k}
                                                                                                                                          s \leftarrow \mathbb{F}_{2^k}
                                                                                                                                     f_i \leftarrow f_i \oplus s
                   e_i \leftarrow e_i \oplus r
                   e_j \leftarrow e_j \oplus [(a_i \cdot b_j \oplus r) \oplus a_j \cdot b_i] f_j \leftarrow f_j \oplus [(a_i \cdot d_j \oplus s) \oplus a_j \cdot d_i]
            end for
    end for
```


SecMult	$(t+1)^2$	
TwoMult	$2(t+1)^2$	$-\left(\left\lfloor \frac{t+1}{2} \right\rfloor\right)^2$
CommonMult	$2(t+1)^2$	$-(t+1)\cdot \left(\lfloor \frac{t+1}{2} \rfloor\right)$
m-Mult	$m(t+1)^2$	$-(m-1)\left(\lfloor \frac{t+1}{2} \rfloor\right)^2$
m-CommonMult	$m(t+1)^2$	$-(m-1)(t+1)\cdot (\lfloor \frac{t+1}{2} \rfloor)$

Table: Complexity Comparison of Secure Multiplications

Security Proofs

- Security proven in the *t*-**SNI** model.
- The proof in this model ensures the security with only t+1 shares, instead of 2t+1 shares in the original model.
- EasyCrypt verification tool on our AES S-box algorithm (thanks to S.Belaïd).

SecExp254

```
Input: A shared representation X of x

Output: A shared representation Res of x^{254} = x^{-1}
X_2 \leftarrow X^2
X \leftarrow \text{RefreshMask}(X)
X_3 \leftarrow \text{SecMult}(X_2, X)
X_{12} \leftarrow X_3^4
X_3 \leftarrow \text{RefreshMask}(X_3)
(X_{14}, X_{15}) \leftarrow \text{CommonMult}(X_{12}, X_2, X_3)
X_{240} \leftarrow X_{15}^{16}
\text{Res} \leftarrow \text{SecMult}(X_{240}, X_{14})
```


Performances on several S-Boxes

	k	m	N _{mult}	N'_{mult}
AES	8	16	4	2.8
DES	6	8	4	3.1
PRESENT	4	16	2	1.5
SERPENT	4	32	2	1.5
CAMELLIA	8	8	10	7.8
CLEFIA	8	8	10	7.8

Table: Equivalent number of multiplications N'_{mult} for various block-ciphers, with m k-bit S-Boxes.

Conclusion

- General improvement for multiplications with t-SNI security.
- Core idea: improvements with common shared values.
 - The ratio between two multiplications and a CommonMult is $\frac{3}{4}$.
 - A sequence of m multiplications has an equivalent cost of $\frac{3}{4}(m-1)+1$.
 - A sequence of m CommonMult has an equivalent cost of $\frac{5}{8}(m-1)+1$.
- Implementation for AES S-Box evaluation.
- Theoretical gain for other block ciphers thanks to interpolation.